Genetic Risk Factors for Childhood Leukemia

GETA Symposium 3 March, 2009

Anand Chokkalingam, Ph.D. School of Public Health, University of California, Berkeley anandc@berkeley.edu

Outline

Background
Review from literature
Northern California Childhood Leukemia Study (NCCLS) experience
Challenges
Future directions

Review

NCCLS

Challenges

Future Directions

Genetic susceptibility

- Q: What is genetic susceptibility?
- A: Heritable factors that increase risk of a given disease
- Usually one or more genes, or gene variations
- May work in concert with
 - Other genetic factors, AND/OR
 - Environmental and lifestyle factors
- Degree of involvement of other factors depends on penetrance

Review

NCCLS

Challenges

Future Directions

Penetrance

Penetrance

High: rare, but high risk (e.g., BRCA1, RR~5)
 Major part of short causal pathway to disease

Low: common, but low risk (RRs of ~1.3-1.8)
 Minor part of long causal pathway to disease

 Low-penetrance genetic factors likely to comprise the bulk of inherited cancer risk

Review

NCCLS

Challenges

Future Directions

Rationale for genetic susceptibility to CL

Early age of onset

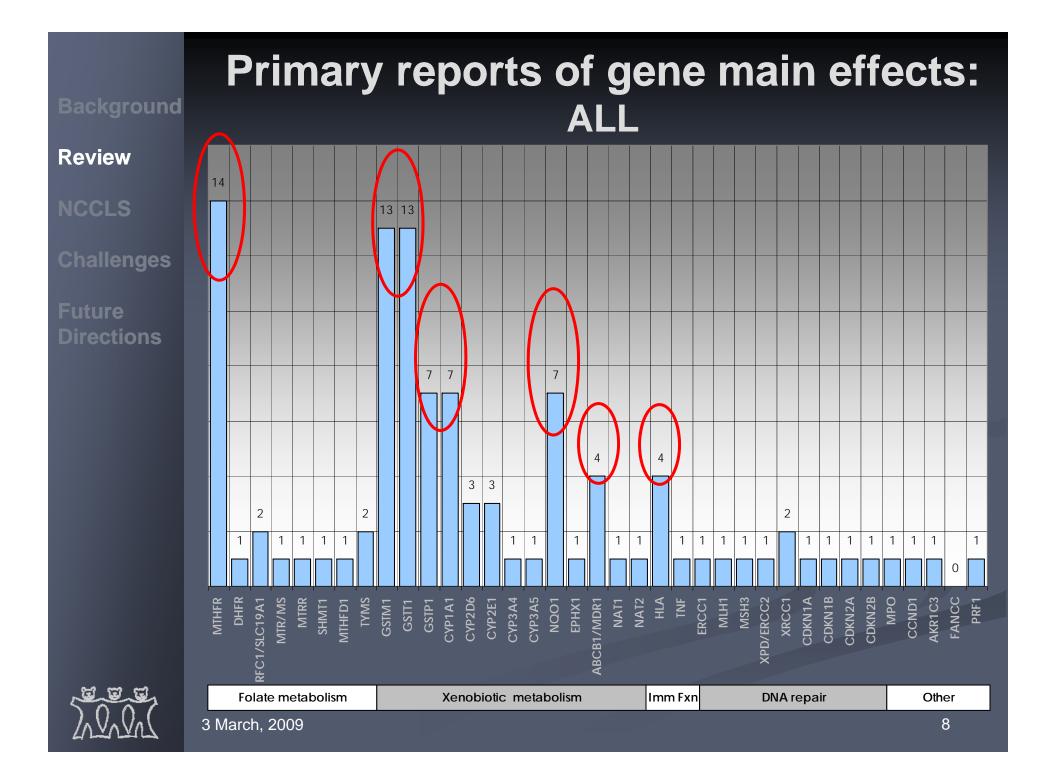
- Risk in twins
 - Mostly intraplacental metastasis, not highly penetrant risk allele
 - Suggests low penetrance susceptibility alleles

Review

Review

NCCLS

Challenges


Future Directions

Candidate pathways in published reports

Folate metabolism

- Xenobiotic (exogenous chemical) transport and metabolism
- Immune function
- DNA repair

Review

NCCLS

Challenges

Future Directions

Folate metabolism & ALL

Folate

- Essential micronutrient, modulates balance between accuracy of DNA synthesis and DNA methylation
- Deficiency can induce chromosomal damage and fragile chromosomal sites \rightarrow carcinogenesis
- Maternal supplementation during pregnancy may reduce risk
- MTHFR, 2 loss-of-function variants: 14 reports
 - 677C>T: null effect or modest risk reduction (OR~0.9)
 - 1298A>C: null effect

Xenobiotic metabolism & ALL

NCCLS

Review

Challenges

Future Directions • To do harm, exogenous chemicals must

enter cells

- Membrane transporters (e.g., MDR1)
- be metabolized into harmful species
 - Phase 1, bioactivation enzymes (e.g., CYPs)
 - Phase 2, detoxification enzymes (e.g., GSTs, NQO1)

Transporters

- MDR1: 4 reports
 - 3435C>T: null risk
- Phase 1, bioactivation
 - CYP1A1: 7 repots
 - 6235T>C: inconsistent

Xenobiotic metabolism & ALL

Challenges

Review

Future Directions Phase 2, detoxification GSTM1 (detoxifies PAHs): 13 reports deletion: null to modestly increased risk GSTT1 (detoxifies epoxides and halomethanes): 13 reports deletion: null risk GSTP1: 7 reports I105V: null risk NQO1 (anti-oxidant, detoxifies quinones): 7 reports 609C>T: null risk 465C>T: null risk (2 reports)

		P	r	ir	n	8	Ir	'Y	/	r	e	р	0	r	't	S		D '	f	g	JE	Pr		9	r	n	8		n		6.	ff	fe	90	ct	S	
Background								_		_												1															
Review																																					
NCCLS																																					
Challenges																																					
Future Directions																																					
	F																																				
									3	3	1	3		1																							
	0	0	0	0	0	0	0	0			1		1	1	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0		1	0
	MTHFR	DHFR	RFC1/SLC19A1	MTR/MS	MTRR	SHMT1	MTHFD1	TYMS	GSTM1	GSTT1	GSTP1	CYP1A1	CYP2D6	CYP2E1	CYP3A4	CYP3A5	NQ01	EPHX1	ABCB1/MDR1	NAT1	NAT2	HLA	TNF	ERCC1	MLH1	MSH3	XPD/ERCC2	XRCC1	CDKN1A	CDKN1B	CDKN2A	CDKN2B	MPO	CCND1	AKR1C3	FANCC	PRF1
. ಆ_ ಆ_ ಆ_		F		e m	etab	olis	m					Xe	nob	iotio	c m	etak	oolis	m				lmm	Fxn				DN	IA re	epai	ir					Othe	ər	
2nonna	3 №	larc	:h, 2	200)9																														1	12	

Review

NCCLS

Challenges

Future Directions

Evaluating the evidence

- HuGENet <u>Human Genome Epidemiology Net</u>work
- HuGENet Encyclopedia: synopsis of evidence for genetic associations of complex disease
- CL as one of several prototype encyclopedia entries
- Venice meeting (2006): to develop criteria for rapid evaluation of evidence to facilitate encyclopedia effort
 - 3 criteria:
 - Amount of evidence
 - Replication
 - Protection from bias
 - Letter grades (A, B, C) for each AAA is ideal

Published by Oxford University Press on behalf of the International Epidemiological Association © The Author 2007; all rights reserved. International Journal of Epidemiology 2007;1–11 doi:10.1093/ije/dym159

Assessment of cumulative evidence on genetic associations: interim guidelines

John P A Ioannidis,¹⁻³* Paolo Boffetta,⁴ Julian Little,⁵ Thomas R O'Brien,⁶ Andre G Uitterlinden,⁷ Paolo Vineis,⁸ David J Balding,⁸ Anand Chokkalingam,⁹ Siobhan M Dolan,¹⁰ W Dana Flanders,¹¹ Julian P T Higgins,¹² Mark I McCarthy,^{13,14} David H McDermott,¹⁵ Grier P Page,¹⁶ Timothy R Rebbeck,¹⁷ Daniela Seminara¹⁸ and Muin J Khoury¹⁹

Review

NCCLS

Challenges

Future Directions

Venice criteria evaluation for ALL Pilot Results

Result of preliminary review None have reached A status in any criterion Only MTHFR and GSTM1 rank BBB All else have a C in at least one criterion Evaluation of criteria in progress Next steps: Refine criteria Develop systems for Consistent assignment and adjudication of grading Updating as new evidence is published

Review

NCCLS

Challenges

Future Directions

Summary

- Few genes have been studied to date for ALL, even fewer for AML
- Many high-probability candidates remain unexamined or unreplicated
- Entire candidate pathways with very strong biological plausibility remain poorly studied (e.g., immune function, DNA repair)
- Reports to date do not ensure good coverage of variation within a gene

Review

NCCLS

Challenges

Future Directions

3 March, 2009

HapMap Project Publicly available SNP data

International HapMap Project

Home | About the Project | Data | Publications | Tutorial

Instructions

Search using a sequence name, gene name, locus, or other landmark. The wildcard character * is allowed. To center on a location, click the ruler. Use the Scroll/Zoom buttons to change magnification and position.

Examples : Chr20 , Chr9:660,000..760,000 , SNP:rs6870660 , NM_153254 , BRCA2 , ENm010 .

- LD -	- tagSNPs -	- Phased Haplotype -	- Genotype da	ta -	- Frequency data -	- Symbol	s and colours used -				
on :			Reports & Analysis :								
	Search		~	Configure Go							
el#19/pha	asell Oct05, on i	NCBI B34 assembly, dbSNP b	124 🔽								
)	n:	n : Search	n : Search	n: Search	n : Reports Annota	n : Reports & Analysis : Annotate LD Plot	n : Search Search				

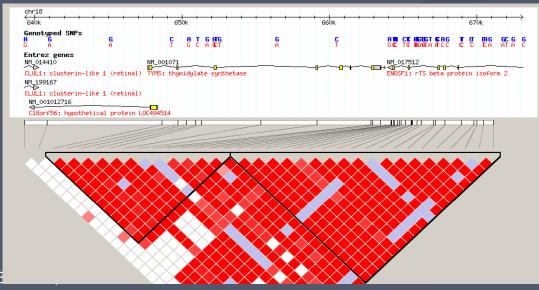
Population descriptors:YRI: Yoruba in Ibadan, Nigeria, JPT: Japanese in Tokyo, Japan, CHB: Han Chinese in Beijing, China, CEU: CEPH (Utah residents with ancestry from northern and western Europe

□ <u>Overview</u> □ Details

For performing in depth LD and Haplotype analysis of genotype data install Haploview in your local machine Haploview (ver3.12) is now available for download.

Data on linkage between SNPs in different populations

Review


NCCLS

Challenges

Future Directions

Haplotype-based analysis

- Uses HapMap and similar data
 Permits:
 - Maximal coverage of variation within genes
 - Minimum number of SNPs

Review

NCCLS

Challenges

Future Directions

chr18

Genotyped SNPs

CLUL1: clusterin-like 1 (retinal)

CLUL1: clusterin-like 1 (retinal)

8orf56: hypothetical protein LOC

Entrez genes

NM_001012716

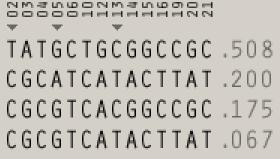
NM_199167

Haplotype-based analysis

Block 1

Uses HapMap and similar data
Permits:

ç


Ģ

Maximal coverage of genes

Minimum number of

TYMS: thumidulate sunthetas

NM_001071

NCCLS experience

Review

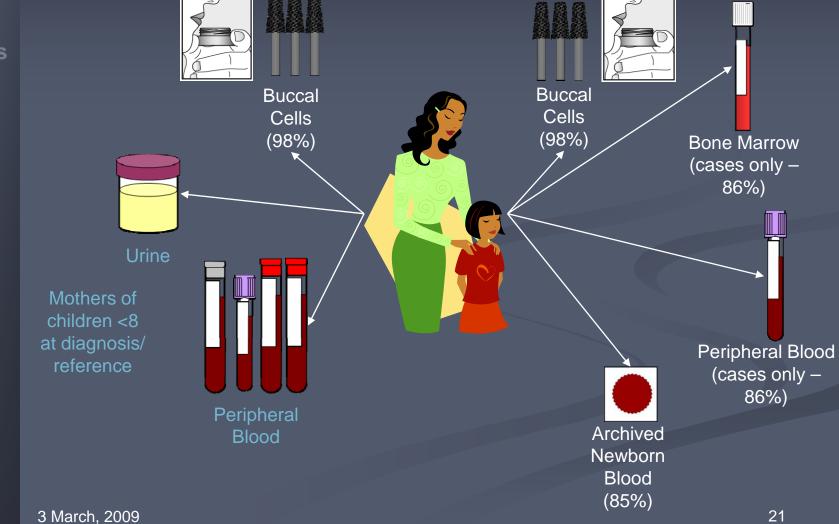
NCCLS

Challenges

Future Directions

Northern California Childhood Leukemia Study 1995-present

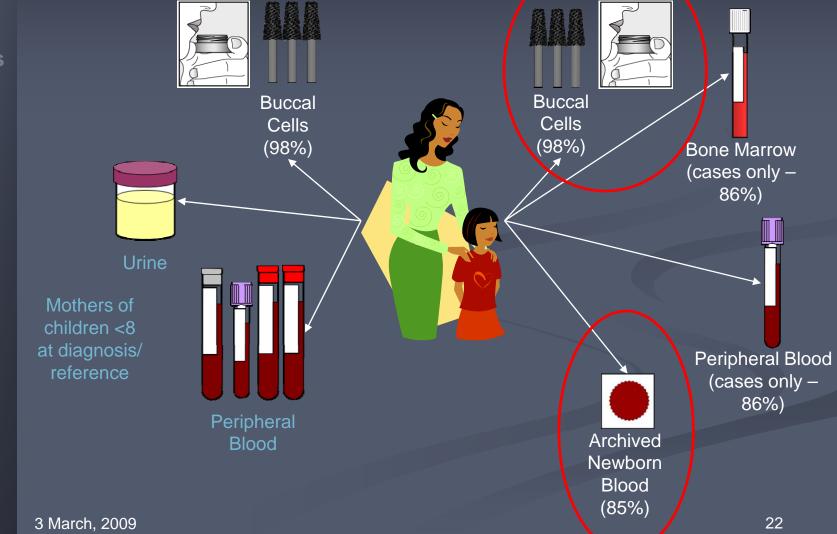
- Population-based case-control study
- Incident cases ascertained from 9 pediatric hospitals in N. & C. California
- Controls <u>individually</u> <u>matched</u> (DOB, sex, Hispanic status, and maternal race)
- 42% Hispanic



NCCLS

Challenges

Future Directions


Review

NCCLS

Challenges

Future Directions

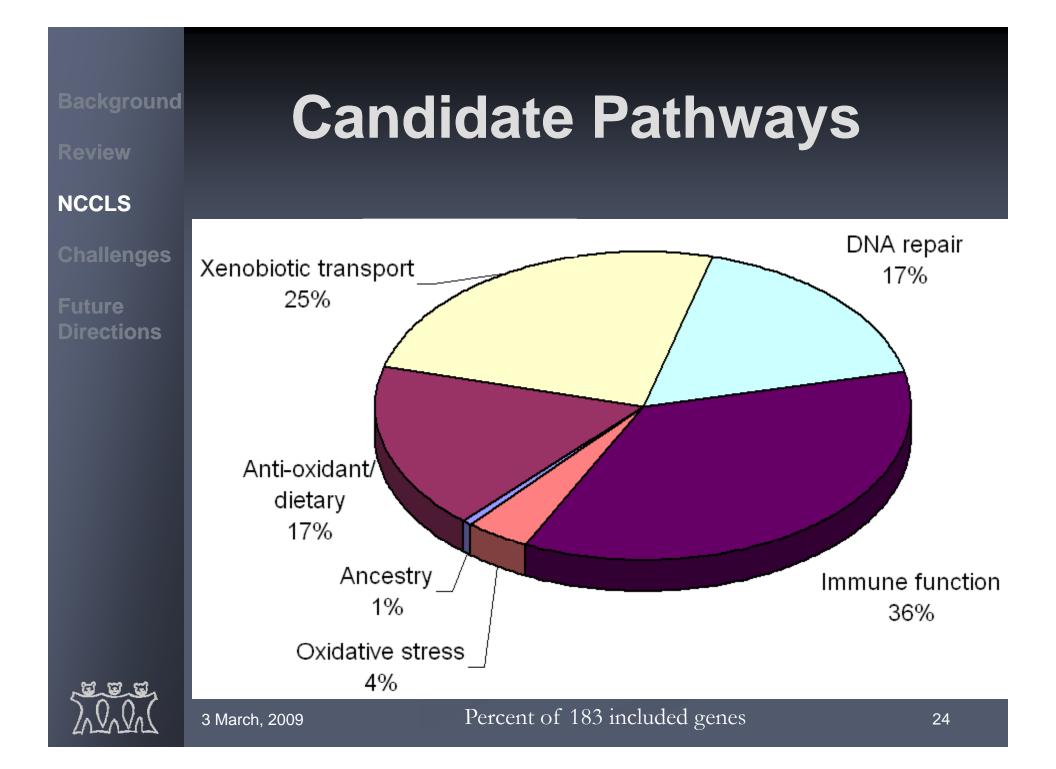
Review

NCCLS

Challenges

Future Directions

Large-scale Genotyping


 Objective: to comprehensively examine ~200 candidate genes in subset of available children (464 cases, 464 controls)

Custom Illumina 1536-plex

- e 183 genes
 - Haplotype tagging SNPs
 - Literature SNPs

- Ancestry Informative Markers
 - Adjust for genetic ancestry

NCCLS panel coverage NCCLS Illumina panel - SNP distribution 2.5E+08 NCCLS Challenges 2.0E+08 Directions 1.5E+08 Coordinate 1.0E+08 5.0E+07 0.0E+00 Х 22 20 21 2 3 5 6 7 8 9 10 11 12 13 15 16 17 18 19 1 14 Chromosome

Review

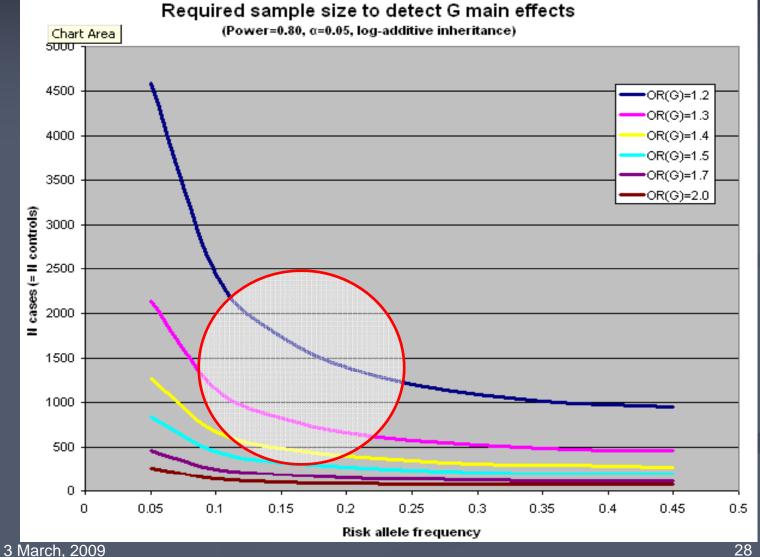
NCCLS

Challenges

Future Directions

NCCLS genotyping Current status – Preliminary analyses

- Adaptive immunity and ALL (208 SNPs in 29 genes)
 - I9 SNPs with nominal p<0.05</p>
 - Single IL12A SNP (p<0.00001)</p>
 - Haplotype sliding window analyses: regions in CD28, FCGR2A, GATA3, IL2RA, IL12A, STAT4, and STAT6
- Xenobiotic transport and metabolism and ALL (251 SNPs in 42 genes)
 - Individual SNP associations for ABCB1, ABCC1, and CYP2C8 genes.
 - Haplotype sliding window analyses: regions in ABCC1, ABCB1, CYP1A1, CYP1A2, CYP2B6, CYP2C8, IDH1, UGT1A1, UGT1A7, and UGT1A9.
 - Potential interaction: CYP2C8 risk haplotype and selfreported exposure to paints and solvents


Challenges to genetic susceptibility research in childhood leukemia

Statistical power and sample size issues Maternal genes Replication Publication Bias

Challenges

Future Directions

Review

NCCLS

Challenges

Future Directions

Sample size

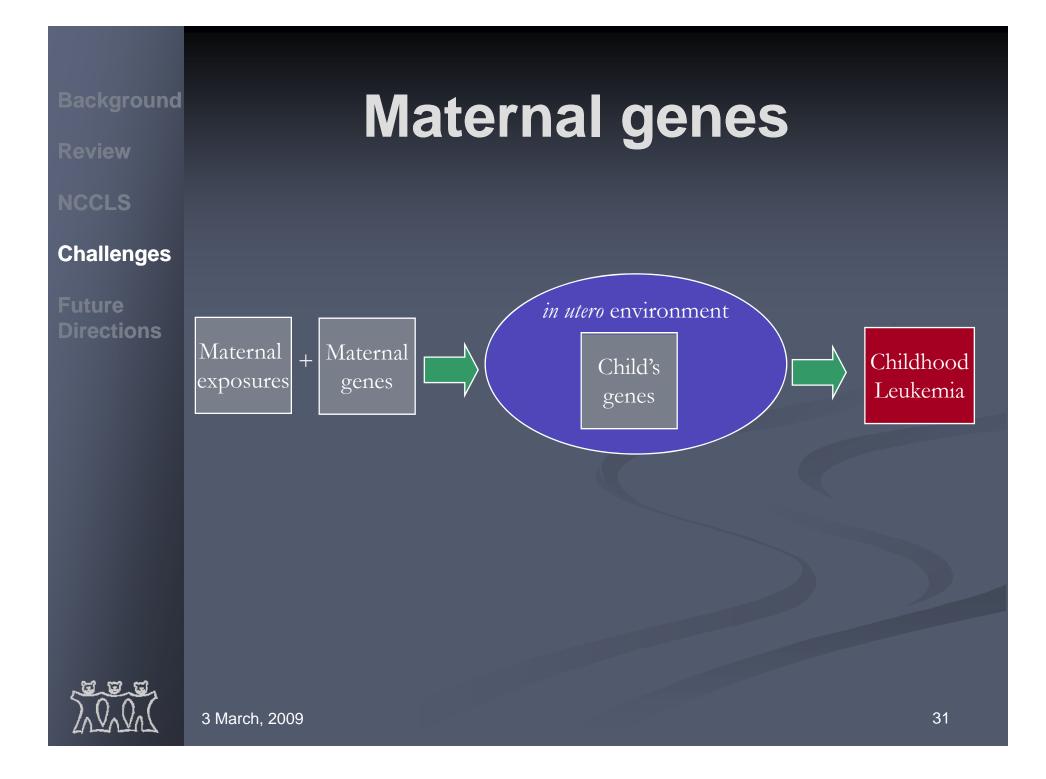
- Sample sizes limited by
 - Low incidence
 - 4.5/100,00 person-years
 - Disease heterogeneity
 - Subtype groups
 - "Lumping vs. splitting"
 - Availability of high-quality DNA
- Published genetic studies typically 100-300 cases
 - Larger studies expected

Other

Review

NCCLS

Challenges


Future Directions

Interactions

Small effect sizes (OR~1.2-1.5) point to effects of GxE interactions
Critical to understanding susceptibility

- Requires
 - High-quality exposure data
 - Even larger sample sizes for sufficient power

Review

NCCLS

Challenges

Future Directions

Other major challenges

Replication of results

- Multiple studies
- Multiple populations
- Publication bias
 - When null results are not presented or published

Future directions

Review

NCCLS

Challenges

Future Directions

CLIC

- Childhood Leukemia International Consortium
 - www.clic.berkeley.edu
 - To date: 14 case-control studies in 10 countries
 - Over 9,000 cases
- Purpose
 - Replication of findings
 - Coordinated publication (address publication bias)
 - Data pooling (improve statistical power)
 - Collaborative research

Review

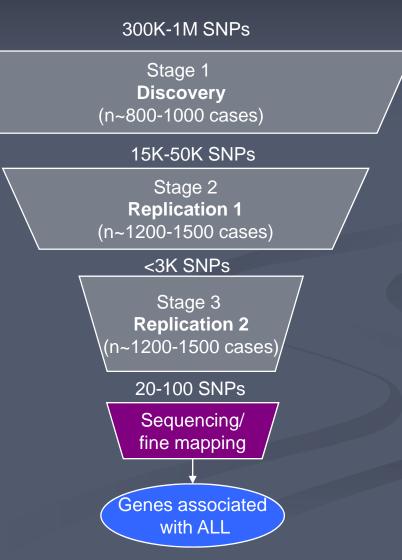
NCCLS

Challenges

Future Directions

GWAS

- <u>Genome-Wide</u> <u>Association</u> <u>Studies</u>
 - Allows exploration of genome beyond candidate genes
 - 300K-1M variants across the genome
- Issues
 - Sample size
 - Replication strategy
 - Technical requirements
 - DNA quality (unamplified, genomic DNA)
 - DNA quantity (~1 microgram)
 - Cost


Review

NCCLS

Challenges

Future Directions

3 March, 2009

Acknowledgments

UCB

- Patricia Buffler
- Catherine Metayer
- Kevin Urayama
- Ghislaine Scelo
- Jeffrey Chang
- Melinda Aldrich
- Lisa Barcellos
- Martyn Smith

• UCSF

- Joe Wiemels
- John Wiencke
- Helen Hansen
- CDC
 - Muin Khoury
- NCI
 - Stephen Chanock
- UKCCS
 - Malcolm Taylor

