Health Effects of Inhaled Engineered and Incidental Nanoparticles

Kent Pinkerton, Ph.D. University of California, Davis

Amy K. Madl, MS, DABT University of California, Davis

ChemRisk, LLC

Genetic and Environmental Toxicology Association June 24, 2009

• Overview

- Emphasize importance of understanding physical and chemical characteristics of nanomaterials
- Consider past experience as guidance for identifying important properties of nanomaterials
- Review past research in regards to what is known about size, shape, surface chemistry, etc. and describe what this means for understanding the hazards of engineered nanomaterials

Nanotechnology

 Field that "involves a wide range of technologies that measure, manipulate, or incorporate materials and/or features with at least one dimension between approximately 1 and 100 nanometers (nm). Such applications exploit the properties, distinct from bulk/macroscopic systems, of nanoscale components."

Incidental v. Engineered Nanoparticles

Different Types of Nanomaterials

- Carbon nanotubes
- Silver nanoparticles
- Metal oxides
- Nanocrystals
- Nanowires
- Superparamagnetic iron oxide
- Ligand-coated gold
- Dendrimers
- Quantum dots
- Micelles
- Liposomes
- Polymers

Nanoscience Images by Zhengwei Pan

Applications and Potential Sources of Exposure

Biomedical

- Drug carriers
- Tumor imaging & treatment
- Cell-targeted therapy
- Cell sensors & microchips
- Cell and tissue scaffolds

Industrial

- Molecular switches
- Battery electrodes
- Solar & fuel cells
- Composites
- Semiconductor
- Remediation

Consumer

- Appliances
- Food and beverage
- Textiles
- Filtration
- Sports equipment
- Electronics & computers
- Cosmetics
- Personal care products
- Automotive equipment

Experience with Incidental Nanoparticles can Provide Insights into the Possible Hazards of Engineered Nanoparticles

Chemical Composition of San Joaquin Valley Fine Aerosol

Nitrate Organic Carbon Elemental Carbon Metals Sulfate Non-metals

Lung Cytokine/Chemokines from Exposure to Concentrated Ambient Particles (CAPs)

Westside Winter 2008

Epithelial Cytotoxicity of Airway Bifurcations following Particle Exposure

Interleukin-6 Expression in the Brain Following Exposure to Concentrated Ambient Particles (CAPs)

Real-time PCR was used to detect IL-6 expression levels * p = 0.024

Characteristics of Iron and Iron-Soot Particles

Energy (eV)

No change in phase or nanoparticle size

Oxidative Stress/Glutathione Levels in the Lungs of Animals Exposed to Iron Soot

Bronchoalveolar Lavage

Lung Homogenate

Reduced Heart Rate Variability Following Exposure to Iron Soot

Atherosclerotic lesions

Platelet aggregation

What Physical and Chemical Characteristics of Engineered Nanoparticles Dictate Biocompatibility or Toxicity?

Placing Hazard Information in the Framework of Health Risk

Hazard Identification

- Chemical form
- Size
- Shape
- Surface area
- Number
- Density
- Mass
- Agglomeration
- Porosity
- Charge
- Reactivity

- Solubility
- Durability
- Crystalline structure
- Purity
- Antigenicity

Much Can Influence Hazard and Health Risk

Exposure

Product form Bulk concentration Purity Composite makeup Friability Stability/degradation Method of handling Exposure setting Dispersion Reentrainment Bulk volume Exposure frequency Exposure duration

Particle

Characteristics

Chemical form Size Shape Surface area Number Density Mass Agglomeration Porosity Charge Reactivity Solubility Durability Crystalline structure Purity Antigenicity

Biological Fate Exposure route (ADME) Absorption Distribution Metabolism Elimination Biopersistence

Biological Effects Inflammation Cytotoxicity Oxidative stress Fibrosis Cellular and organ homeostasis Genotoxicity

Markers for Toxicity

- Inflammatory cell profile
- Cytokine patterns
- Oxidative stress
 - Reactive oxygen species
 - Lipid peroxidation
 - Antioxidant capacity
- Structural/cellular remodeling
- Collagen
- Cell proliferation

- Apoptosis
- Physiologic impairment
- Cell cytotoxicity
- Immune cell function
- Metabolic capacity
- Secretory defense

Pinkerton et al. 2000 EHP 108:1063-1069

Characteristics of Interest (OECD)

- Agglomeration/aggregation
- Water solubility
- Crystalline phase
- Dustiness
- Crystallite size
- Representative TEM picture(s)
- Particle size distribution
- Specific surface area
- Zeta potential (surface charge)

- Surface chemistry (where appropriate)
- Photocatalytic activity
- Pour density
- Porosity
- Octanol-water partition coefficient, where relevant
- Redox potential
- Radical formation potential

Article Size

Considerations of Particle Size

- There are many factors that can affect the size distribution of particles
 - Agglomeration
 - Suspension/media
 - Exposure route/method
 - Chemical bonds (e.g., van der Waals)
- This, in turn, can affect
 - Fate/transport
 - Retention/elimination
 - Cellular responses

Respiratory Deposition at Different Particle Sizes

Particle Fate and Transport

Nanoparticles are Retained Longer in the Lungs

Enhanced Absorption of Nanoparticles in the Gut

- GI receives ~30-50% of inhaled nanoparticles through clearance via the mucociliary escalator
- Some occupational exposures associated with oral or GI cancers
- Particle size, charge, lipid solubility influences
 - Dissolution rate
 - Bioavailability

Nanoparticles Can Transport to Extrapulmonary Organs

- Retention/excretion of15 nm Iridium particles
- Peak dose of 0.1-0.5% at 1 week in liver, spleen, kidneys, heart, and brain
- Thereafter declined to 0.01-0.05%
- Although low extrapulmonary transport is inversely related to particle size

Titanium Dioxide is a Useful Model for Understanding Effects of Nanoparticle Physicochemisty

- Applications
 - Opacifier for paints, coatings, food, and cosmetics
 - UV absorber in sunscreens
- Differential pulmonary toxicity
 - Particle size
 - Crystalline form
 - Agglomeration
 - Surface area
 - Morphology
 - Coatings

Toxicity Studies of TiO₂: Effect of Size and Crystalline Form

Percent Neutrophils in BAL Fluids of Rats exposed to Fine or Ultrafine-TiO₂ Particulates

Collagen Response from SWCNTs Can Vary Depending on Extent of Agglomeration

SWCNTs

Dispersed SWCNTs

MWCNTs Show Greater Responses from Instillation

Instillation of MWCNTs (Muller et al. 2008)

 Single bolus dose of 2 mg per animal

Mitchell Toxicol Sci 100 203 2007; Muller Chem Res Tox 2008

Inhalation of MWCNTs

(Mitchell et al. 2007)

 0.3, 1 or 5 mg/m³ for 7 or 14 day

Shape

Materials Today June 2004. Zhong Lin Wang, Georgia Institute of Technology

Shapes and Dimensions Vary Greatly for Nanomaterials

- Morphological variations include
 - Solid v. porous
 - Spherical v. tubular
 - Singlet v. agglomerated
- Particle dimensions that inhibit normal clearance mechanisms and increase retention are of greatest concern
- Impaired particle clearance by macrophages (e.g., frustrated phagocytosis, volumetric loading) can play an important role in pathogenesis

Asbestos Fiber Type and Dimension Influences Retention

Fiber Half Times (Days)

<u>Fiber</u>	<u><5µm</u>	<u>5-20µ</u>	<u>>20µm</u>
Amosite	NR*	NR	418 ⁽¹
Crocidolite	44	(234)(142)	817 ^{(1, (2}
Canadian Chrysotile 107		29.4	16 ⁽³
U.S. Chrysotile	NR	NR	<1 ⁽³
Chrysotile (Cana	-		
Bra∨a Mine)	>2.4	2.4	1.3 ⁽⁴
Tremolite	NR	NR	Very Long ⁽³

*Clearance of fibers <5µm was faster than Clearance of fibers >20µm. ¹ Hesterberg, 1998 ² Hesterberg, 1996 ³Bernstein, 2003a, 2003b ⁴Bernstein 1999, 2000

Presented by Dr. David Bernstein at Asbestos Mechanisms of Toxicity Workshop, Chicago, IL 2003

TiO₂ Shape, Size and Surface Area Show Similar Toxicity

 Nanosized TiO₂ rods and dots show similar effects as finesized TiO₂

Surface Metals

Mauricio Terrones. Recent Advances on N-doped Carbon Nanotubes and their Applications. http://met.iisc.ernet.in/~nano2006/AbstractSubmissions/Invited.html

Transition Metals

- Catalyze generation of reactive oxygen species, which can lead to
 - Lipid membrane damage
 - Inflammation
 - Oxidative stress
 - Cellular remodeling, necrosis, apoptosis
 - Oncogene upregulation
- Shown to play an important role in the toxicity of asbestos

Iron in Asbestos Increased Profibrotic Markers

Increasing iron content increases procollagen mRNA

Adding a chelator for iron reduces procollagen mRNA

Dai and Churg Am J Respir Cell Mol Biol 24 427 2001

Iron Can Make Nonfibrogenic Particle Fibrogenic

Adding iron to TiO₂ particles increases procollagen mRNA

Adding iron to fibers (MMVF) increases procollagen mRNA

Surface Chemistry Can Effect ADME and Toxicity

- Nanoparticle surface chemistry is a immense area of research for therapeutic applications
- Surface chemistry can effect
 - Absorption, distribution, metabolism, and elimination (ADME)
- Altering this surface chemistry could be the difference between biocompatibility or toxicity
- Surface chemistry can be easily altered through chemical engineering

Fate and Transport of Quantum Dots: Effect of Surface Chemistry

Dermal Penetration of Quantum Dots (6nm): Effect of Surface Chemistry

Localization

Ryman-Rasmussen et al. 2006

Surface Chemistry Influences Carbon Nanotube Kinetics

- Amine groups cause enhanced excretion
- Non-agglomerated carbon nanotubes show half-life of 1 hr although some accumulation is observed in liver after 24 hr

Singh PNAS 103 3357 2006

Surface Characteristics of Carbon Nanotubes

 Important surface characteristics driving effects of carbon nanotubes may not be limited to metals, but may include morphology and extent of unpaired or "dangling" bonds

Surface Area

Does Surface Area Tell the Entire Story?

 As particle size decreases, surface area increases, which offers a greater surface for particle-cell interactions...but does this mean it is the only exposure of concern?

Bhavsar and Amiji Gene Therapy 15:2000 (2008)

Particle Mass/Surface Area and Inflammation

Low Toxicity Particles Follow Similar Dose-Response Pattern

Duffin et al. Inhal Toxicol 19 849 2007

Different Surface Reactivity Changes Dose-Response Curve

Biopersistence

US Geological Survey. http://usgsprobe.cr.usgs.gov/picts2.html

• Biopersistence

 Fiber toxicology research has shown that biopersistence (retention + durability) is an important component of toxicity

- Dimension
- Durability
- Dose

Geiser et al. EHP 111 895 2003; USGS http://usgsprobe.cr.usgs.gov/picts2.html; Churg et al. Am Rev Respir Dis 139 885 1989

Fibers ×10E9/Gm Lung

Oberdorster EHP 102 173 1994; Nel Science 311 622 2006

• Conclusions

- Nanomaterials have an incredible potential for advances in medicine, energy/fuel conservation, electronics, and environmental remediation
- Past experience has shown that agglomeration, size, shape, and surface chemistry seem to be key determinants, but no one property drives toxicity for all particle types
 - Persistence does not necessarily mean toxicity
 - Engineered nanomaterials with high functionality and rapid excretion are more desirable
- Through systematic toxicity testing and intentional physicochemical modifications, nanomaterials can be designed to maximize their societal benefits and minimize their human health risks

Acknowledgement

 Background literature research, as presented here, has contributed to conceptual development of original research of the health effects of inhaled carbon nanotubes as funded by US EPA Star Grant #83171401 and Student Fellowship for University of California Toxic Substances Research & Teaching Program