The New Generation of Contaminants That Could Affect the Bay: Flame Retardants, Pharmaceuticals, Perfluorinated Compounds

Mike Connor

San Francisco Estuary Institute

GETA Fall Meeting October 2, 2007

SAN FRANCISCO ESTUARY INSTITUTE

Acknowledgements

Susan Klosterhaus, SFEI Meg Sedlak, SFEI Don Weston, UCB Kelly Moran, Karin North, Palo Alto WWTP Kevin Kelley, CSU Long Beach Disso.

SAN FRANCISCO ESTUARY INSTITUTE

The Old Days

SAN FRANCISCO ESTUARY INSTITUTE

Total BOD and TSS Loading to the Bay

SAN FRANCISCO ESTUARY INSTITUTE

Copper Loadings from San Jose/Santa Clara

Urban Runoff now dominates Bay loading issues

SF Bay Region TMDL Projects

GC-MS total ion current trace of a 1993 water sample from Dumbarton Bridge showing dissolved organic components (F3). Abbreviations: FAME = fatty acid methyl ester, Si = silicone, U = unknown.

Major anthropogenic compound groups found in 1999-2000

ANNUAL 20

- •Surfactants
- •Plasticizers
- •Musks
- •Flame retardants
- Personal care product ingredients

Surfactants

Sources: household and industrial products Max level: ppt (ng/L) in water. Far below level of impact Concern: endocrine system disruption, bioaccumulation

Plasticizers

Sources: household and industrial products Max level: ppb (μ g/L) in water, ubiquitous contaminants Concern: endocrine system disruption, bioaccumulation

Flame Retardant Found in Lake Michigan

And Lots of It! New Y

New Yorker comment

Alternative Flame Retardants: Flammability Standards

1. Consumer product-specific standards

2. CA Furniture Flammability Standard (TB 117, 1975)

- Polyurethane foam
- CA first, only state to have standard
- Penta-BDE

M Deve O

3. National Mattress Flammability Standard (July 1, 2007)

the Flammah

SAN FRANCISCO ESTUARY INSTITUT

Flame Retardants

Tributylphosphate

Triphenylphosphate

Tris(1,3-dichloro-2propyl)phosphate

PBDEs (mainly congeners 47, 99, 100, 153, 154)

Sources: textiles, household and industrial products Max level: ppb (μ g/kg) in sediments and bivalve tissues Concern: endocrine system disruption, bioaccumulation

PBDE Timetable

2002: RMP begins monitoring PBDEs

2003: AB 302 - Wilma Chan (Oakland-D) bans Penta- and Octa- PBDEs in CA

2006: CA begins phase-out of Penta- and Octa- (but not Deca-BDEs)

Polybrominated Diphenyl Ethers (PBDEs)

Petreas et al. 2001

PBDEs in the Bay Area

Detected in:

- Water, WW effluent, sediment
- Bivalves
- Sport fish
- Harbor seals
- Bird eggs
- People

BDE 47 in Sediment (2004 - 2006)

Sources in most segments

No trend

• Similar or higher than other locations worldwide

PBDEs in SF Bay Harbor Seal Blubber doubled every 1.8

Our first conceptual model

- Concentrations of PBDEs are increasing rapidly.
- Levels are at or near levels of concern for human health.
- Are PBDEs the next PCB-like problem?

Annual Loading Estimates *PBDE loads are 3-11x PCB loads.*

	PBDE	PCB
Source	(kg/yr)	(kg/yr)
Wastewater	37	2.5
Small tributaries	~64	9-15
Delta	~11	6-23
Atmosphere	1-2	-7
Total	~114	10-34

Sources: RMP special study on wastewater discharges; L. McKee; CARB (2005); D. Yee

RMP MEETING 2006

Modeling PBDEs

*Predicted inventories are consistent with those estimated from monitoring.

Model predictions are preliminary.

SAN FRANCISCO ESTUARY INSTITUTE

Predicting Recovery from PBDEs *At 0 PBDE load, 10% of the current inventory will be reached in 5 yrs.

SAN FRANCISCO ESTUARY INSTITUTE

Why are predicted recoveries so fast? *PBDEs degrade much faster than PCBs

Parameter	BDE-47 ^a	PCB-118 ^b
Degradation half-life in water (years)	0.5	56
Degradation half-life in sediment (years)	1.5	56

SAN FRANCISCO ESTUARY INSTITUTE

PBDE Future Scenarios

IF

- PBDE inputs are ~5 times PCB inputs, but PBDE inventories are >10 times lower.
- PBDEs degrade more quickly than PCBs.
 THEN
- With the bans on Penta- and Octaformulations, improvements in a few years.
- Risks to the biota remain unknown.
- What about replacements?

Chemical	2002 Prod. Vol. (lbs)	Accumulates	Persists	Eco Tox	Mam Tox
Tris(1,3-dichloro-2- propyl)phosphate (TDCPP)	10-50M	?	M?	Μ	Н
Triphenylphosphate (TPP)	10-50M	H?	L?	Н	?
Octyl tetrabromobenzoate (OTB)	?	?	?	H?	?
Tetrabromobisphenol A (TBBPA)	100-500M	L	Μ	Н	Н
Hexabromocyclododecane (HBCD)	10-500K	Н	н	н	Н
Decabromodiphenylethane (DBDPE)	?	L	H?	?	?
1,2-Bis(2,4,6- tribromophenoxy)ethane (BTBPE)	1-10M	H?	M?	?	?
Pentabromoethylbenzene (PBEB)	0	M?	M?	?	?
Dechlorane Plus (DP)	1-10M	L	Н	?	?

2008 Pilot Study: Alternative Flame Retardants in San Francisco Bay

with the Marine Mammal Center EBMUD, Duke University, Skidaway Institute of Oceanography

Analyze bioaccumulative compounds in:

- harbor seal blubber
- sport fish
- cormorant eggs

Analyze non-bioaccumulative compounds in: Bay surface water WWTP influent, effluent (if feasible)

Common Outdoor Urban Insecticides Are Also Common in Surface Water

1950s	Organochlorines – DDT, Chlordane, Dieldrin, etc.
1970s	Organophosphates – Diazinon, Chlorpyrifos, etc.
1990s	Pyrethroids
2010s	

SAN FRANCISCO ESTUARY INSTITUTE

Pyrethroid Pesticides

Toxicity of Bay Area Pyrethroids Use Almost Tripled Between 2001 & 2004 Increase coincident with diazinon phase out

Estimated use of study list pyrethroids in the San Francisco Bay Area 2001-2004 (permethrin equivalents)^{sterior}

Investigations of Sources and Effects of Pyrethroid Pesticides in Watersheds of the San Francisco Bay Estuary

Aquatic Toxicity Due to Residential Use of Pyrethroid Insecticides

(Weston et al. 2005)

High toxicity Moderate toxicity Non-toxic

Hyalella azteca Freshwater amphipod

SAN FRANCISCO ESTUARY INSTITUTE

Emerging Contaminants in Effluent and the Bay

- Determine concentrations of pharmaceuticals and personal care products in:
 - Influent/effluent from two WWTP
 - Ten stations in South Bay
- In-kind contributions
 - City of Palo Alto (Karin North)
 - City of San Jose (Dave Tucker AXYS analytical (Million Model)

Triclosan

SAN FRANCISCO ESTUARY INSTITUTE

Personal Care Products

Acetaminophen (analgesic/decongestant)

Benzophenone (fixative)

Octylmethoxycinnamate (sunscreen)

N,N-Diethyltoluamide (DEET)

Sources: consumer and personal care products Max level: ppt (ng/L) in water Concern: toxicity

Pharmaceuticals and Personal Care Products in the South Bay

Average concentration (ng/L)

compound	influent	effluent	Bay
Acetaminophen	60,000	<500	<300
Albuterol	20	2	<20
Caffeine	60,000	40	70
Ciprofloxacin	500	<300	<100
Codiene	200	<200	<200
Cotinine	1,000	30	<20
Diltiazem	200	30	2
Erythromycin Hydrate	200	200	10
Fluoxetine	20	30	<20
Gemfibrozil	1,000	30	10
Ibuprofen	10,000	<100	<100
Lincomycin	20	2	<5
Roxithromycin	3	<4	<1
Sulfadimethoxine	2	1	<200
Sulfamethoxazole	1,000	70	200
Sulfathiziazole	4	<4	<100
Trimethoprim	300	26	1
Warfarin	5	<1	<1

- Influent > Effluent > Bay Water
- Concentrations in Bay << toxicity thresholds
- Potential Studies for 2009
 - Triclosan
 - Degradation products

Perfluorinated Chemicals (PFCs)

Applications: Stain repellants, packaging materials, industrial surfactants, fire-fighting foams

FRANCISCO ESTUARY INSTITUTE

Perfluorinated Chemicals (PFCs)

RMP Pilot Study:

- Collaboration with Marine Mammal Center
- Health of seal population
- PFCs, PBDEs in harbor seal blood
- Exposure to apex predators

Perfluorinated Chemicals (PFCs)

Perfluorooctanesulfonate (PFOS) in Seal Blood: SF Bay vs. Other Locations

SAN FRANCISCO ESTUARY INSTITUTE

Applications:

electronics, biomedical, pharmaceutical, cosmetic, environmental

Production: 2000 tons in 2004, 30-fold increase by 2011-2020

A Concern in the Bay?

- Bioavailable, toxic to aquatic organisms
- Urban sources
- Colloidal fraction or form aggregates

Adsorbent for metals and organic contaminants

SAN FRANCISCO ESTUARY INSTITUTE

EEPS 2006

Endocrine disruption in fish

- Impairment of endocrine system in fish in So CA Bight
 - Kevin Kelley, CSU-Long Beach
 - Suppression of growth, defense capabilities & reproduction
- RMP study
 - Measure cortisol, estradiol, testosterone, and insulin-like growth factors in SF fish

SAN FRANCISCO ESTUARY INSTITUTE

Pacific staghorn sculpin

Shiner Surfperch

pelagic

benthic

Pacific Staghorn Sculpin Leptocottus armatus

2006 Field Sites [pilot year]

San Pablo Bay

Berkeley Waterfront

Oakland Inner Harbor

Redwood City

<u>far-field reference</u>: Tomales Bay

THYROID ENDOCRINE SYSTEM

Thyroid Hormones

3,5,3',5'-tetraiodothyronine (thyroxine)

3,5,3'-triiodothyronine

- broad physiological actions
- essential for brain/neural development
- permissive to somatic growth
- important regulators of metabolism

Thryoxine (T4) Levels in Shiner Surfperch

Thryoxine (T4) Levels in Pacific Staghorn Sculpin

Thryoxine (T4) Levels in SF Bay Fish

Environmental Contaminants are Implicated in Thyroid Endocrine Disruption:

...e.g., Phenols, Hg, Cd impair thyroxogenesis in thyroid follicle cells in fish (Bhattacharya et al., '89)

...e.g., endosulfan, Aroclor 1254 and selected PCBs decrease T4 levels in fish, via effects on **iodotyrosine diodinases** (Coimbra et al., '05; LeRoy et al., '06)

...e.g., ioxynil, certain PCBs and PBDEs bind **transthyretin** and TRs with high affinities, altering T4 and T3 levels/ actions in fish (Tomy et al., '04; Lema et al., '06; Morgado et al., '07)

STRESS RESPONSE ENDOCRINE SYSTEM

Shiner Surfperch

Stress Response

Const. Good candidates for
 Pesticide
 Human

- Deliberately
 Not waste, not
- Tiny environmer cally relevant concentrations

ts

Courtesy Wikipedia

www.sfei.org

PE • Treatment challenging

Phar 8 FD&C Act Pe FIFRA (EPA) (FDA) Prod S > Almost all are regulated by laws intended to prevent environmental problems TSCA (EPA) PFCs PBD www.sfei.org

Courtesy Wikipedia

Lesson #1: The "Urban Gap"

- Pesticides are registered for uses that will cause Clean Water Act violations & municipal compliance problems
 - Urban runoff not considered
 - Sewer discharge evaluation is new
 - Water quality risks usually not mitigated

Lesson #2: Little Municipal Control Over Pesticides

- <u>Can</u> regulate discharge
- Cannot regulate sales or use
- <u>Can</u> use voluntary programs
 - Even expensive programs usually can't obtain reductions needed for compliance

Ability to comply controlled by pesticide regulators & market—not by municipalities

Lesson #3: Reactive Laws

Pesticide laws are not structured to prevent problems

- Proof of harm usually required before pesticide regulatory actions taken
- No penalties for harm due to legal pesticide use

Clean Water Act is proactive— Penalties start as soon as problems occur

Emerging Pollutant Regulatory Gaps

No process to prevent replacing one problem with another

No timely mechanism to address newly identified water quality impacts

Urban use implications often forgotten

Potential Emerging Contaminants

Pyrethroid pesticides

Pharmaceuticals and Personal Care Products

Perfluorinated chemicals

Non-PBDE, alternative flame retardants

Nanoparticles

Most information

Least information

SAN FRANCISCO ESTUARY INSTITUTE